Honda and Daido Steel have teamed up to develop the world’s first practical application of a hot deformed neodymium magnet which does not contain rare earth metals.
The statement doesn't exactly roll off your tongue but the meaning behind it is pretty important. As Honda explains, neodymium magnets must have heat resistant properties for automotive use and this is typically achieved by adding heavy rare earth metals such as dysprosium and / or terbium. However, supplies of these materials are limited and their demand is expected to grow exponentially in the future.
To get around these problems, Honda and Daido Steel have come up with a new hot deformation technique which doesn't require the use of heavy rare earth metals and still gives the magnets heat resistant properties.
To take advantage of the breakthrough, Honda has developed a new motor which can accommodate the magnets. The company was coy on specifics but confirmed the motor will be installed in the company's Sport Hybrid i-DCD hybrid system which will debut in the Honda Freed. The model will go on sale this fall so expect to learn more about it in the coming months.
Source: Honda
Gallery: Honda electric motor without rare earth metals
Daido Steel and Honda Adopt World's First Hybrid Vehicle Motor Magnet Free of Heavy Rare Earth Elements
– Honda Freed, on sale this fall, will be the first hybrid vehicle to adopt new magnet –
TOKYO, Japan, July 12, 2016 - Daido Steel Co., Ltd. and Honda Motor Co., Ltd. became the world’s first companies to achieve practical application of a hot deformed neodymium magnet containing no heavy rare earth*1 and yet with high heat resistance properties and high magnetic performance required for the use in the driving motor of a hybrid vehicle. This heavy rare earth-free hot deformed neodymium magnet will be applied first to the all-new Honda FREED, scheduled to go on sale this fall.
[Background]
Neodymium magnets have the highest magnetic force among all magnets in the world and are being used for the drive motors of electric vehicles including hybrid vehicles, and therefore demand for neodymium magnets are expected to grow exponentially in the future.
For use in the drive motors of electric vehicles, neodymium magnets must have high heat resistance properties as they are used in a high temperature environment. Adding heavy rare earth (dysprosium and/or terbium) to the neodymium magnets has been a conventional method to secure such high heat resistance.
However, major deposits of heavy rare earth elements are unevenly around the world, and also are categorized as rare metals; thus, the use of heavy rare earth carries risks from the perspectives of stable procurement and material costs. Therefore, a reduction in the use of heavy rare earth elements has been one of the major challenges needing to be addressed in order to use neodymium magnets for the drive motors of hybrid vehicles.
[New development]
Daido Electronics Co., Ltd., a wholly owned subsidiary of Daido Steel, has been mass-producing neodymium magnets using the hot deformation method, which is different from the typical sintering production method for neodymium magnets. The hot deformation method is a technology that enables nanometer-scale crystal grains to be well-aligned in order to realize a fine crystal grain structure that is approximately ten times smaller than that of a sintered magnet, which makes it possible to produce magnets with greater heat resistance properties.
This time, Daido Steel and Honda jointly developed new neodymium magnets while Daido Steel further evolved its hot deformation technologies and Honda leveraged its experience in development of drive motors and revised the shape of the magnet. Through these joint development efforts, the two companies achieved, for the first time in the world, a practical application of a neodymium magnet which contains absolutely no heavy rare earth yet has high heat resistance and high magnetic performance suitable for use in the drive motor of hybrid vehicles.
Moreover, Honda designed a new motor which accommodates this new magnet. In addition to the shape of the magnet, Honda revised the shape of the rotor to optimize the flow of the magnetic flux of the magnet. As a result, the hot deformed neodymium magnet that contains absolutely no heavy rare earth became usable for the drive motor of a hybrid vehicle, demonstrating torque, output and heat resistance performance equivalent to those of a motor that uses the conventional type of magnet.
[Benefit of this technology]
Adoption of this technology enables a break from the constraints associated with heavy rare earth, which had been one of the challenges to expanding the use of neodymium magnets. This technology will make it possible to avoid resource-related risks and diversify channels of procurement.
[Next steps]
<Honda>
Honda will first apply this hot deformed neodymium magnet with absolutely no heavy rare earth to the Honda SPORT HYBRID i-DCD*2, a hybrid system Honda will adopt for the all-new FREED scheduled to go on sale this fall. Honda will continue expanding application of this technology to new models in the future.
<Daido Steel>
With the newly-developed hot deformed neodymium magnet, Daido Steel will make a new entry into the market for magnets used for drive motors of hybrid vehicles, which has been basically monopolized by sintered neodymium magnets. Starting next month, August 2016, Daido Electronics will begin the mass-production and shipment of this magnet using a new production line that the company built in its factory (located in Nakatsugawa City in Gifu Prefecture in Japan) using a subsidy*3 received from the Japanese Ministry of Economy, Trade and Industry (METI).
Moreover, Daido Steel will continue pursuing the development of heavy rare earth-free magnets with further improved properties.
Furthermore, Daido Steel has been procuring magnetic powder, the raw material for magnets, from Magnequench International Inc. (located in Toronto, Ontario, Canada), and Daido Steel will work together with Magnequench to develop new types of raw magnetic powders for the purpose of realizing enhanced magnetic properties.